Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
If
, find 
$y=12-x+x^{-1}$ $\dfrac{dy}{dx}=0-1\times x^{1-1}-1\times x^{-1-1}$ $\dfrac{dy}{dx}=1-x^{-2}$ $\dfrac{d^{2}y}{dx^{2}}=0-2\times -x^{-2-1}$ $\dfrac{d^{2}y}{dx^{2}}=2x^{-3}$ $\dfrac{d^{2}y}{dx^{2}}=\dfrac{2}{x^{3}}$






See lessIf
, find 
$y=12-x+x^{-1}$ $\dfrac{dy}{dx}=0-1\times x^{1-1}-1\times x^{-1-1}$ $\dfrac{dy}{dx}=1-x^{-2}$ $\dfrac{dy}{dx}=1-\dfrac{1}{x^{2}}$




See lessIf
, find 
$y=\dfrac{3}{2}x^{-1}$ $\dfrac{dy}{dx}=-1\times \dfrac{3}{2}x^{-1-1}$ $\dfrac{dy}{dx}=-\dfrac{3}{2}x^{-2}$ $\dfrac{dy}{dx}=-\dfrac{3}{2x^{2}}$ $\dfrac{d^{2}y}{dx^{2}}=-2\times -\dfrac{3}{2}x^{-2-1}$ $\dfrac{d^{2}y}{dx^{2}}=3x^{-3}$ $\dfrac{d^{2}y}{dx^{2}}=\dfrac{3}{x^{3}}$







See lessIf
, find 
$y=\dfrac{3}{2}x^{-1}$ $\dfrac{dy}{dx}=-1\times \dfrac{3}{2}x^{-1-1}$ $\dfrac{dy}{dx}=-\dfrac{3}{2}x^{-2}$ $\dfrac{dy}{dx}=-\dfrac{3}{2x^{2}}$




See lessIf
, find 
$y=2x^{3}-x+7$ $\dfrac{dy}{dx}=3\times 2x^{3-1}-1\times x^{1-1}+0$ $\dfrac{dy}{dx}=6x^{2}-x^{0}$ $\dfrac{dy}{dx}=6x^{2}-1$ $\dfrac{d^{2}y}{dx^{2}}=2\times 6x^{2-1}-0\times x^{0-1}$ $\dfrac{d^{2}y}{dx^{2}}=12x$






See lessIf
, find 
$y=2x^{3}-x+7$ $\dfrac{dy}{dx}=3\times 2x^{3-1}-1\times x^{1-1}+0$ $\dfrac{dy}{dx}=6x^{2}-x^{0}$ $\dfrac{dy}{dx}=6x^{2}-1$




See lessIf
, find 
$y=3x^{2}-x$ $\dfrac{dy}{dx}=2\times 3x^{2-1}-1\times x^{1-1}$ $\dfrac{dy}{dx}=6x^{1}-x^{0}$ $\dfrac{dy}{dx}=6x-1$ $\dfrac{d^{2}y}{dx^{2}}=1\times 6x^{1-1}-0\times x^{0-1}$ $\dfrac{d^{2}y}{dx^{2}}=6$






See lessIf
, find 
$y=3x^{2}-x$ $\dfrac{dy}{dx}=2\times 3x^{2-1}-1\times x^{1-1}$ $\dfrac{dy}{dx}=6x^{1}-x^{0}$ $\therefore \dfrac{dy}{dx}=6x-1$




See lessIf
, find 
$y=2x^{5}+4x^{4}-3x^{3}+2x^{2}-7$ $\dfrac{dy}{dx}=5\times 2x^{5-1}+4\times 4x^{4-1}-3\times 3x^{3-1}+2\times 2x^{2-1}-0$ $\dfrac{dy}{dx}=10x^{4}+16x^{3}-9x^{2}+4x$



See lessIf
, find 
$y=2x^{5}+4x^{4}-3x^{3}+2x^{2}-7$ $\dfrac{dy}{dx}=5\times 2x^{5-1}+4\times 4x^{4-1}-3\times 3x^{3-1}+2\times 2x^{2-1}-0$ $\dfrac{dy}{dx}=10x^{4}+16x^{3}-9x^{2}+4x$ $\dfrac{d^{2}y}{dx^{2}}=4\times 10x^{4-1}+3\times 16x^{3-1}-2\times 9x^{2-1}+1\times 4x^{1-1}$ $\dfrac{d^{2}y}{dx^{2}}=40x^{3}+48x^{2}-1Read more





See less