Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
If
, find 
$y=2x^{5}$ $\dfrac{dy}{dx}=5\times 2x^{5-1}$ $\dfrac{dy}{dx}=10x^{4}$



See lessIf
, find 
$y=2x^{5}$ $\dfrac{dy}{dx}=5\times 2x^{5-1}$ $\dfrac{dy}{dx}=10x^{4}$ $\dfrac{d^{2}y}{dx^{2}}=4\times 10x^{4-1}$ $\dfrac{d^{2}y}{dx^{2}}=40x^{3}$





See lessIf
, find 
$s=3t^{2}-t^{-1}$ $\dfrac{ds}{dt}=2\times 3t^{2-1}-(-1)\times t^{-1-1}$ $\dfrac{ds}{dt}=6t^{1}+t^{-2}$ $\dfrac{ds}{dt}=6t+\dfrac{1}{t^{2}}$ $\dfrac{d^{2}s}{dt^{2}}=1\times 6t^{1-1}+(-2)\times t^{-2-1}$ $\dfrac{d^{2}s}{dt^{2}}=6t^{0}-2t^{-3}$ $\dfrac{d^{2}s}{dt^{2}}=6-\dfrac{2}{t^{3}}$







See lessIf
, find 
$s=3t^{2}-t^{-1}$ $\dfrac{ds}{dt}=2\times 3t^{2-1}-(-1)\times t^{-1-1}$ $\dfrac{ds}{dt}=6t^{1}+t^{-2}$ $\dfrac{ds}{dt}=6t+\dfrac{1}{t^{2}}$




See lessIf
, find 
$s=3t^{5}-5t^{-2}+11$ $\dfrac{ds}{dt}=5\times 3t^{5-1}-2\times 5t^{-2-1}-0$ $\dfrac{ds}{dt}=15t^{4}-10t^{-3}-0$ $\dfrac{ds}{dt}=15t^{4}-10t^{-3}$ $\dfrac{d^{2}s}{dt^{2}}=4\times 15t^{4-1}-(-3)\times 10t^{-3-1}$ $\dfrac{d^{2}s}{dt^{2}}=60t^{3}+30t^{-4}$ $\dfrac{d^{2}s}{dt^{2}}=60t^{3}+\dfrac{30}{t^{4Read more







See lessIf
, find 
$s=3t^{5}-5t^{-2}+11$ $\dfrac{ds}{dt}=5\times 3t^{5-1}-2\times 5t^{-2-1}-0$ $\dfrac{ds}{dt}=15t^{4}-10t^{-3}-0$ $\dfrac{ds}{dt}=15t^{4}-10t^{-3}$




See lessIf
, find 
$s=3t^{5}+7t-1$ $\dfrac{ds}{dt}=5\times 3t^{5-1}+1\times 7t^{1-1}-0$ $\dfrac{ds}{dt}=15t^{4}+7t^{0}-0$ $\dfrac{ds}{dt}=15t^{4}+7$ $\dfrac{d^{2}s}{dt^{2}}=4\times 15t^{4-1}+0$ $\dfrac{d^{2}s}{dt^{2}}=60t^{3}$






See lessIf
, find 
$s=3t^{5}+7t-1$ $\dfrac{ds}{dt}=5\times 3t^{5-1}+1\times 7t^{1-1}-0$ $\dfrac{ds}{dt}=15t^{4}+7t^{0}-0$ $\dfrac{ds}{dt}=15t^{4}+7$




See lessIf
, find 
$s=4t^{3}-3t^{2}+t-5$ $\dfrac{ds}{dt}=3\times 4t^{3-1}-2\times 3t^{2-1}+1\times t^{1-1}-0$ $\dfrac{ds}{dt}=12t^{2}-6t+t^{0}-0$ $\dfrac{ds}{dt}=12t^{2}-6t+1$ $\dfrac{d^{2}s}{dt^{2}}=2\times 12t^{2-1}-1\times 6t^{1-1}+0$ $\dfrac{d^{2}s}{dt^{2}}=24t-6$






See lessIf
, find 
$s=4t^{3}-3t^{2}+t-5$ $\dfrac{ds}{dt}=3\times 4t^{3-1}-2\times 3t^{2-1}+1\times t^{1-1}-0$ $\dfrac{ds}{dt}=12t^{2}-6t+t^{0}-0$ $\dfrac{ds}{dt}=12t^{2}-6t+1$




See less