Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Find
for 
$y=3x^{3}$ $\dfrac{dy}{dx}= 3\times 3x^{3-1}$ $\dfrac{dy}{dx}= 9x^{2}$ $\dfrac{d^{2}y}{dx^{2}}= 2\times 9x^{2-1}$ $\dfrac{d^{2}y}{dx^{2}}= 18x$





See lessFind
for 
$y=3x^{3}$ $\dfrac{dy}{dx}= 3\times 3x^{3-1}$ $\dfrac{dy}{dx}= 9x^{2}$



See lessIf
, find 
$y=\dfrac{x^{3}-2x+1}{x^{2}}$ $y=x-\dfrac{2}{x}+\dfrac{1}{x^{2}}$ $y=x-2x^{-1}+x^{-2}$ $\dfrac{dy}{dx}= 1-(-1)\times -2x^{-1-1}+(-2)\times x^{-2-1}$ $\dfrac{dy}{dx}= 1-2x^{-2}-2x^{-3}$ $\dfrac{dy}{dx}= 1-\dfrac{2}{x^{2}}-\dfrac{2}{x^{3}}$






See lessDifferentiate
wrt x
$y=\sin 3x$ Let $u=3x$ and $y=\sin u$ $\dfrac{du}{dx}=3$ and $\dfrac{dy}{du}=\cos u$ $\dfrac{dy}{dx}= \dfrac{du}{dx}\times \dfrac{dy}{du}$ $\dfrac{dy}{dx}= 3\times \cos u$ $\dfrac{dy}{dx}= 3\cos u$ $\dfrac{dy}{dx}= 3\cos 3x$

and 
and 




See lessLet
Differentiate
wrt x
$y=\sin (2x-4)$ Let $u=2x-4$ and $y=\sin u$ $\dfrac{du}{dx}=2$ and $\dfrac{dy}{du}=\cos u$ $\dfrac{dy}{dx}= \dfrac{du}{dx}\times \dfrac{dy}{du}$ $\dfrac{dy}{dx}= 2\times \cos u$ $\dfrac{dy}{dx}= 2\cos u$ $\dfrac{dy}{dx}= 2\cos (2x-4)$

and 
and 




See lessLet
Differentiate
wrt x
$y=\cos (2x+5)$ Let $u=2x+5$ and $y=\cos u$ $\dfrac{du}{dx}=2$ and $\dfrac{dy}{du}=-\sin u$ $\dfrac{dy}{dx}= \dfrac{du}{dx}\times \dfrac{dy}{du}$ $\dfrac{dy}{dx}= 2\times -\sin u$ $\dfrac{dy}{dx}= -2\sin u$ $\dfrac{dy}{dx}= -2\sin (2x+5)$

and 
and 




See lessLet
Differentiate
wrt x
$y=\cos 6x$ Let $u=6x$ and $y=\cos u$ $\dfrac{du}{dx}=6$ and $\dfrac{dy}{du}=-\sin u$ $\dfrac{dy}{dx}= \dfrac{du}{dx}\times \dfrac{dy}{du}$ $\dfrac{dy}{dx}= 6\times -\sin u$ $\dfrac{dy}{dx}= -6\sin u$ $\dfrac{dy}{dx}= -6\sin 6x$

and 
and 




See lessLet
Differentiate
wrt x
$y=\sin 4x$ Let $u=4x$ and $y=\sin u$ $\dfrac{du}{dx}=4$ and $\dfrac{dy}{du}=\cos u$ $\dfrac{dy}{dx}= \dfrac{du}{dx}\times \dfrac{dy}{du}$ $\dfrac{dy}{dx}= 4\times \cos u$ $\dfrac{dy}{dx}= 4\cos u$ $\dfrac{dy}{dx}= 4\cos 4x$

and 
and 




See lessLet
Differentiate
wrt x
$y=\tan 2x$ Let $u=2x$ and $y=\tan u$ $\dfrac{du}{dx}=2$ and $\dfrac{dy}{du}=\sec^{2}u$ $\dfrac{dy}{dx}= \dfrac{du}{dx}\times \dfrac{dy}{du}$ $\dfrac{dy}{dx}= 2\times \sec^{2}u$ $\dfrac{dy}{dx}= 2\sec^{2}u$ $\dfrac{dy}{dx}= 2\sec^{2}2x$

and 
and 




See lessLet
If
, find 
$s=\sin 3t$ Let $u=3t$ and $s=\sin u$ $\dfrac{du}{dt}=3$ and $\dfrac{ds}{du}=\cos u$ $\dfrac{ds}{dt}= \dfrac{du}{dt}\times \dfrac{ds}{du}$ $\dfrac{ds}{dt}= 3\times \cos u$ $\dfrac{ds}{dt}= 3\cos u$ $\dfrac{ds}{dt}= 3\cos 3t$

and 
and 




See lessLet