Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
If
, find 
$y=\cos 3x$ Let $u=3x$ and $y=\cos u$ $\dfrac{du}{dx}=3$ and $\dfrac{dy}{du}=-\sin u$ $\dfrac{dy}{dx}= \dfrac{du}{dx}\times \dfrac{dy}{du}$ $\dfrac{dy}{dx}= 3\times -\sin u$ $\dfrac{dy}{dx}= -3\sin u$ $\dfrac{dy}{dx}= -3\sin 3x$ $\dfrac{d^{2}y}{dx^{2}}= 3\times -3\cos 3x$ $\dfrac{d^{2}y}{dx^{2}}= -9Read more

and 
and 






See lessLet
If
, find 
$y=\cos 3x$ Let $u=3x$ and $y=\cos u$ $\dfrac{du}{dx}=3$ and $\dfrac{dy}{du}=-\sin u$ $\dfrac{dy}{dx}= \dfrac{du}{dx}\times \dfrac{dy}{du}$ $\dfrac{dy}{dx}= 3\times -\sin u$ $\dfrac{dy}{dx}= -3\sin u$ $\dfrac{dy}{dx}= -3\sin 3x$

and 
and 




See lessLet
If
, find 
$y=3\cos 2x$ Let $u=2x$ and $y=3\cos u$ $\dfrac{du}{dx}=2$ and $\dfrac{dy}{du}=-3\sin u$ $\dfrac{dy}{dx}= \dfrac{du}{dx}\times \dfrac{dy}{du}$ $\dfrac{dy}{dx}= 2\times -3\sin u$ $\dfrac{dy}{dx}= -6\sin u$ $\dfrac{dy}{dx}= -6\sin 2x$

and 
and 




See lessLet
If
, find 
$y=3\cos x+3\sin x-\cos 2x$ $\Rightarrow \dfrac{dy}{dx}=-3\sin x+3\cos x+2\sin 2x$


See lessIf
, find 
$y=3\cos x+3\sin x-\cos 2x$ $\Rightarrow \dfrac{dy}{dx}=-3\sin x+3\cos x+2\sin 2x$ $\Rightarrow \dfrac{d^{2}y}{dx^{2}}=-3\cos x-3\sin x+4\cos 2x$



See lessIf
, find 
$y=\tan 2x$ Let $u=2x$ and $y=\tan u$ $\Rightarrow \dfrac{du}{dx}=2$ and $\dfrac{dy}{du}=\sec^{2}x$ $\Rightarrow \dfrac{dy}{dx}=\dfrac{du}{dx}\times \dfrac{dy}{du}$ $\Rightarrow \dfrac{dy}{dx}=2\times \sec^{2}x$ $\Rightarrow \dfrac{dy}{dx}=2\sec^{2}x$

and 
and 



See lessLet
Using quotient rule, find
if 
Let $u=\sin x$ and $v=1+\cos x$ $\Rightarrow \dfrac{du}{dx}=\cos x$ and $\dfrac{dv}{dx}=-\sin x$ $\Rightarrow \dfrac{dy}{dx}=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{v^{2}}$ $\Rightarrow \dfrac{dy}{dx}=\dfrac{(1+\cos x)^{2}\times \cos x-\sin x\times -\sin x}{(1+\cos x)^{2}}$ $\Rightarrow \dfrac{dy}{dRead more
Let
and 
from trig. identities

See lessFind
if 
$y=x^{2}\cos 2x$ Let $u=x^{2}$ and $v=\cos 2x$ $\Rightarrow \dfrac{du}{dx}=2x$ and $\dfrac{dv}{dx}=-2\sin 2x$ $\Rightarrow \dfrac{dy}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}$ $\Rightarrow \dfrac{dy}{dx}=\cos 2x\times 2x+x^{2}\times -2\sin 2x$ $\Rightarrow \dfrac{dy}{dx}=2x\cos 2x-2x^{2}\sin 2x$ $\RightaRead more

and 
and 




See lessLet
Find
if 
$y=3\cos x-\sin x$ $\Rightarrow \dfrac{dy}{dx}=-3\sin x-\cos x$


See lessIf
, find 
$y=x^{3}-3x^{2}+6x-1$ $\Rightarrow \dfrac{dy}{dx}=3\times x^{3-1}-2\times 3x^{2-1}+6$ $\Rightarrow \dfrac{dy}{dx}=3x^{2}-6x+6$



See less